The onset of response habituation during the growth of the lateral giant neuron of crayfish

Author:

Edwards D. H.1,Fricke R. A.1,Barnett L. D.1,Yeh S. R.1,Leise E. M.1

Affiliation:

1. Department of Biology, Georgia State University, Atlanta 30302-4010.

Abstract

1. The postembryonic development of the crayfish LG tailflip command neuron's response to mechanosensory input was studied with standard electrophysiological techniques in animals between 1 and 12 cm long. 2. LG neurons are present in each abdominal hemisegment where they receive direct and indirect excitatory input from mechanosensory afferents. In both small and large crayfish, electrical stimulation of an abdominal ganglionic nerve containing those afferents evoked a compound excitatory postsynaptic potential (EPSP) with an early, reliable alpha component and a later, depression-prone beta wave. It is known that the alpha and beta components are produced by inputs from primary mechanosensory afferents and interneurons, respectively. 3. In crayfish < 2 cm long, LG was excited by the alpha component. When superthreshold, the alpha component triggered a single spike; additional excitation provided by the later beta wave presumably was preempted by refractoriness following the alpha spike and by recurrent inhibition of LG excited by the spike. LG was excited reliably by the alpha component in response to repeated superthreshold stimulation. 4. In crayfish between 2 and 3 cm, LG was excited more readily by the beta wave than by the alpha component. LG's beta spike response habituated to repeated stimulation at 1 Hz, and the beta EPSP depressed whereas the alpha component was largely unchanged. The appearance of the cellular substrates of habituation correlates with the reported onset of behavioral habituation of the tailflip response. Higher stimulus levels brought the alpha EPSP to threshold. Repetitive stimulation at these levels reliably evoked LG spikes from the alpha EPSP.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3