Voltage-dependent modulation of GABAA receptor channel desensitization in rat hippocampal neurons

Author:

Yoon K. W.1

Affiliation:

1. Division of Neurosurgery, St. Louis University, School of Medicine, Missouri 63110-0250.

Abstract

1. The mechanism of the time-dependent decline in gamma-amino-butyric acid (GABA)-induced chloride conductance, referred to as desensitization, was studied in dissociated rat hippocampal cell culture with the use of a whole-cell voltage-clamp recording. 2. In most cells the gradual decline of membrane conductance was dependent simultaneously on the agonist concentration and membrane voltage. Even in the continued presence of GABA, desensitization could be prevented by holding the membrane potential > 0 mV in a near symmetrical chloride gradient across the cell membrane. 3. The “recovery” from desensitization occurred after removal of the agonist with a time constant of approximately 35 s. The rate of recovery from desensitization was independent of membrane voltage. 4. When the membrane potential was jumped from a negative to a positive membrane potential during steady state of desensitization, the GABA-induced chloride conductance gradually “relaxed” to the undesensitized state. This phenomenon of gradual increase in chloride conductance or “reactivation” from desensitization was both voltage and agonist dependent. 5. The process of recovery of the GABA ionophore from the desensitized state is distinct from the process of reactivation, which is dependent both on the voltage and agonist. 6. These observations suggest that the ligand-bound GABA receptor has two alternate states, i.e., permissive (activated) and desensitized. The rates of transition between these two states are voltage dependent.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3