GTP modulates run-up of whole-cell Ca2+ channel current in a Ca(2+)-dependent manner

Author:

Wagner J. J.1,Alger B. E.1

Affiliation:

1. Department of Physiology, School of Medicine, University of Maryland,Baltimore 21201.

Abstract

1. Whole-cell voltage-clamp recordings were obtained from CA1 neurons acutely dissociated from rat hippocampus to study the effects of guanosine 5'-triphosphate (GTP) on the gradual increase in Ca2+ channel current amplitude that takes place over several minutes after breaking in to whole-cell mode ("run-up"). 2. Including GTP (500 microM) in the patch pipette significantly prolonged the duration of run-up of peak Ca2+ channel current to its maximum value compared with controls without GTP when the recording solutions contained Ca2+. On the other hand, GTP significantly enhanced run-up when Mg2+ and Ba2+ were substituted for intracellular and extracellular Ca2+, respectively. 3. The enhancement of run-up of the current in the Mg/Ba condition appeared to be due both to an initial increase in current amplitude that was complete within 30 s after break in and to a more rapid initial rate of run-up when compared with the Ca2+ condition. GTP did not affect the absolute maximum amplitudes of the currents in either Ca2+ or Ba2+ conditions. 4. We conclude that an early GTP-dependent modulation of Ca2+ channel current is qualitatively altered, depending on whether Ca2+ or Ba2+ is used as the charge carrier. Evidence of this modulation is apparent within seconds after rupture of the membrane patch. Conceivably, influences occurring during the period of "equilibration" with electrode contents could alter subsequent regulatory steps.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3