N-methyl-D-aspartate receptor-mediated voltage oscillations in neurons surrounding the central canal in slices of rat spinal cord

Author:

Hochman S.1,Jordan L. M.1,MacDonald J. F.1

Affiliation:

1. Department of Physiology, University of Toronto, Ontario, Canada.

Abstract

1. The present study used the whole-cell patch-clamp technique to record from visually identified neurons surrounding the central canal in 300-microns transverse slices of lumbosacral spinal cord from 7- to 14-day-old rats. Neurons in this location are implicated in rhythmical activity during locomotion. We assessed whether similarly located neurons could produce voltage oscillations by local perfusion of neuroactive substances known to initiate locomotor activity. 2. The sample population had mean values for cell resistance and membrane time constant of 1,020 M omega and 61.5 ms, respectively. Three general categories of oscillatory behavior were observed; spontaneous low-frequency voltage oscillations in the absence of an applied agonist, N-methyl-D-aspartate (NMDA)-induced rhythmic low-frequency voltage oscillations in the presence of tetrodotoxin (TTX), and NMDA-induced “unpatterned” low-frequency voltage oscillations in TTX. 3. Three of 42 neurons exhibited spontaneous low-frequency voltage oscillations and one continued to oscillate in the presence of TTX. In 34 other neurons, manual adjustments of membrane voltage in 10 mV increments between -60 and -20 mV failed to elicit voltage oscillations (in TTX). 4. Five of 42 neurons produced rhythmic low-frequency voltage oscillations in the presence of TTX during applications of NMDA (20–100 microM). Oscillation frequency ranged from 0.09 to 1.45 Hz. These neurons were located in a similar region, ventrolateral to the central canal. 5. Thirteen of 42 neurons underwent NMDA-evoked “unpatterned” low-frequency voltage oscillations (in TTX) characterized by great variability in depolarized and baseline membrane potential durations. Three neurons produced single depolarizing phases only. Oscillation frequency ranged from 0.03 to 0.47 Hz. These neurons were located predominantly in the dorsal region surrounding the central canal with two others located just ventral to the canal. 6. Low-frequency voltage oscillations demonstrated a dependence on voltage, applied agonist, and agonist concentration. Rhythmic and unpatterned oscillatory events typically arose from membrane voltages ranging from -70 to -55 mV with plateau peaks from -40 to -30 mV. Although NMDA (20–100 microns) evoked voltage oscillations in neurons, kainate (10–50 microns), serotonin (10-200 microns), and noradrenaline (50–100 microns) failed to evoke voltage oscillations in all neurons tested, including those where NMDA induced voltage oscillations.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3