FRF peptides in the ARC neuromuscular system of Aplysia: purification and physiological actions

Author:

Cropper E. C.1,Brezina V.1,Vilim F. S.1,Harish O.1,Price D. A.1,Rosen S.1,Kupfermann I.1,Weiss K. R.1

Affiliation:

1. Department of Physiology and Biophysics, Mt. Sinai Medical Center, New York, New York 10029.

Abstract

1. One preparation that has proven to be advantageous for the study of neuromuscular modulation is the accessory radula closer (ARC) muscle of Aplysia californica and its motor neurons B15 and B16. In this study three members of a new peptide family have been purified from this well-characterized preparation. Because these peptides terminate in Phe-Arg-Phe-amide, we have named them FRFA, FRFB, and FRFC. The FRFs are thus RFamide peptides and are related to the widely studied neuropeptide FMRFamide. 2. The FRFs are present in the ARC motor neuron B15 in small quantities. 3. When they are exogenously applied, the FRFs decrease the size of ARC muscle contractions elicited by stimulation of either motor neuron B15 or B16. They appear to do this by a combination of presynaptic and postsynaptic actions. 4. Presynaptically, the FRFs appear to act like the buccalins, another family of inhibitory ARC neuropeptides. Both families of peptides reduce the size of motor neuron-elicited excitatory junction potentials (EJPs) presumably by decreasing presynaptic acetylcholine (ACh) release. 5. Postsynaptically, the FRFs appear to depress contractions because they activate a characteristic voltage-dependent, 4-amino-pyridine-sensitive K current in the ARC muscle. The same current is activated by a second class of ARC modulators: those that exert potentiating actions at low doses and inhibitory actions at high doses, i.e., serotonin, the small cardioactive peptides (SCPs), and particularly the myomodulins. Receptors mediating activation of the K current by the FRFs and the other modulators do, however, appear to be different. 6. We hypothesize that the inhibitory actions of the FRFs prevent excessively large muscle contractions. If contraction size is limited, then contraction duration is also limited. This may allow faster and more energetically favorable switching between contractions of antagonistic muscles.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3