Rotational kinematics of the human vestibuloocular reflex. II. Velocity steps

Author:

Tweed D.1,Fetter M.1,Sievering D.1,Misslisch H.1,Koenig E.1

Affiliation:

1. Department of Neurology, University of Tubingen, Germany.

Abstract

1. Gain matrices were used to quantify the three-dimensional vestibuloocular reflex (VOR) in five human subjects who were accelerated over 1 s and then spun at a constant 150 degrees/s for 29 s in darkness. Rotations were torsional, vertical and horizontal, about earth-vertical and earth-horizontal axes. 2. Elements on the main diagonal of the gain matrices were much smaller than the optimal value of -1, and torsional gain was weaker than vertical or horizontal. Off-diagonal elements, indicating cross talk, were minimal except for a small but consistent horizontal response to torsional head rotation. 3. Downward slow phases were more than twice as fast as upward at the start of rotation about both earth-vertical and earth-horizontal axes, but the asymmetry vanished later in the rotation. 4. During earth-vertical-axis rotation, all matrix elements decayed to zero. The main-diagonal torsional and vertical gains waned with time constants close to that of the cupula (6.7 and 7.3 s). Velocity storage prolonged the horizontal response to horizontal head rotation (time constant 14.2 s) but not the horizontal response to torsion (7.7 s). A simple explanation is that velocity storage acts on a central estimate of head motion that accurately distinguishes horizontal from torsional and that the inappropriate horizontal eye velocity response to torsion occurs because of cross talk downstream from velocity storage. 5. During earth-horizontal-axis rotation, the torsional, vertical, and horizontal main-diagonal elements declined, with time constants of 7.6, 8.2, and 7.9 s, to maintained nonzero values, all equal to about -0.1. Off-diagonal elements, including the horizontal response to torsion, decayed to zero, so that the otolith-driven reflex, late in the rotation, was equally strong in all dimensions and almost free of detectable cross talk. 6. The difference between gain curves over the course of earth-vertical- and earth-horizontal-axis rotations was not constant but increased with time, suggesting that the VOR response to earth-horizontal-axis rotation is not a simple sum of canal and otolith reflexes.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3