Regulation of pH in rat brain synaptosomes. I. Role of sodium, bicarbonate, and potassium

Author:

Sanchez-Armass S.1,Martinez-Zaguilan R.1,Martinez G. M.1,Gillies R. J.1

Affiliation:

1. Departamento de Fisiologia, Facultad de Medicina, Universidad Autonoma de San Luis Potosi, Mexico.

Abstract

1. We investigated the regulation of intracellular pH (pHi) in rat brain isolated nerve terminals (synaptosomes), using fluorescence pH indicators and time-resolved fluorescence spectroscopy. 2. The resting pHi was not significantly affected by the presence or absence of HCO3-. Removal of external Na+, in the absence or presence of HCO3- caused a rapid acidification of pHi. The recovery from acid loads was primarily due to the activity of the Na+/H+ exchanger, confirming the relevance of this transport system in synaptosomes. 3. Our data revealed that in synaptosomes the activity of the Na+/H+ exchanger was not regulated by either protein kinase C or kinase A. In contrast, Ca2+ played an important role in the regulation of Na+/H+ exchanger. This was supported by the observation that 4Br-A23187 induced a Na(+)-dependent alkalinization of the resting pHi and greatly enhanced the initial rate and the degree of the recovery from acid loads. 4. In most eukaryotic cells, HCO3(-)-based transport mechanisms play an important role in pHi regulation. In synaptosomes, however, HCO3- transport is not significantly involved in pHi regulation, because the presence or absence of HCO3- does not affect resting pHi nor the rate of pHi recovery to acid loads. Further studies to address the role of Cl- and HCO3- in pHi regulation in synaptosomes are discussed in the companion paper. 5. Increasing the concentration of Ko+ also resulted in a rise of steady-state pHi by a processes that is Ca2+ and HCO3- independent. This alkalinization could be due to either K+/H+ exchanger activity, K(+)-induced depolarization, reduction of delta microH+, or a direct reduction of delta microK+. Calculated H+ driving forces suggest that the reduction in the inwardly directed H+ leak is sufficient to explain this K(+)-induced alkalinization because it changes the delta microH+ by virtue of setting the membrane potential difference (Em) to the K+ equilibrium potential (EK+).

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3