Compartmental models of type A and type B guinea pig medial vestibular neurons

Author:

Quadroni R.1,Knopfel T.1

Affiliation:

1. Institut fur Theoretische Physik, ETH-Honggerberg, Zurich, Switzerland.

Abstract

1. We have developed compartmental models of guinea-pig medial vestibular nuclei neurons (MVNns). The structure and the parameters of the model cells were chosen to reproduce the responses of type A and type B MVNns as described in electrophysiological recordings. 2. Dynamics of membrane potentials were modeled in 46 and 61 branched electrical compartments for Type A and Type B MVNns, respectively. Each compartment was allowed to contain up to nine active ionic conductances: a fast inactivating sodium conductance, gNa, a persistent sodium conductance, gNap, a low-voltage activated calcium conductance, gCa(LVA), a high-voltage activated calcium conductance, gCa(HVA), a fast-voltage activated potassium conductance, gK(fast), a slowly relaxing voltage activated potassium conductance, gK(slow), a fast transient potassium channel, gK(A), a slowly relaxing mixed sodium-potassium conductance activating at hyperpolarized membrane potentials, gH, and a calcium-activated potassium conductance gK(AHP). The kinetics of these conductances were derived from voltage-clamp studies in a variety of preparations. Kinetic parameters as well as distribution and density of ion channels were adjusted to yield the reported electrophysiological behavior of medial vestibular neurons. 3. Dynamics of intracellular free [Ca2]i were modeled by inclusion of a Ca(2+)-pump and a Na(+)-Ca2+ exchanger for extrusion of calcium. Diffusion of calcium between submembraneous sites and the center of an electrical compartment was modeled by 25 and 6 shell-like chemical compartments for the cell body and the proximal dendrites, respectively. These compartments also contained binding sites for calcium. 4. The dynamics of active conductances were the same in both models except for gK(fast). This was necessary to achieve the different shape of spikes and of spike afterhyperpolarization in type A and type B MVNns. An intermediate depolarizing component of the spike afterhyperpolarization of type B neurons in part depended on their dendritic cable structure. 5. Variation of the low threshold calcium conductance, gCa(LVA), shows that the ability to generate low-threshold spike bursts critically depends on the density of this conductance. Sodium plateaus were generated when increasing the density of gNap. 6. The type B model cell generated rhythmic bursts of spiking activity under simulation of two distinct experimental conditions.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3