Affiliation:
1. Department of Physiology, University of Umea, Sweden.
Abstract
1. The encoding of force amplitude and force rate by human periodontal mechanoreceptive afferents was studied. Recordings were obtained from 19 single periodontal afferents in the inferior alveolar nerve with the use of tungsten microelectrodes. Loads consisting of a force increase (loading ramp), a phase of maintained force (static phase), and a force decrease (unloading ramp) were applied to the receptor bearing tooth, which was most often an incisor. The static forces applied ranged between 0.05 and 5 N, and the rate of force applied during the loading ramps ranged between 0.4 and 70 N/s. The forces were primarily applied in one of six directions (lingual, labial, mesial, distal, upward, or downward) that evoked the greatest discharge activity. 2. For each force application, the steady-state response was defined as the mean discharge rate during a 1-s period starting 0.5 s after the end of the loading ramp. Most afferents (15/19) exhibited a “hyperbolic” (viz., negatively accelerating) relationship between the amplitude of the stimulation force and the steady-state response, featuring a pronounced saturation tendency: the highest sensitivity to changes in static force was observed at force levels below 1 N. At higher force levels the sensitivity gradually diminished. Moreover, the dynamic sensitivity similarly decreased with increasing amplitude of static background force. For a subsample of afferents studied, comparable stimulus-response relationships were obtained in directions other than the most responsive one, but the discharge rates were lower. 3. In contrast to the response of most afferents, four (4/19) differed in that they consistently exhibited a nearly linear relationship between force amplitude and the steady-state response. Moreover, these afferents maintained their dynamic sensitivity as the amplitude of the background force was increased. 4. The steady-state response of all afferents was well described as a constant times F/ (F + c), where F represents the steady-state force, and c the force generating one-half the estimated maximum discharge rate that could be evoked by steady-state force stimulation. The c-parameter was on average 0.42 N (range 0.05–1.1 N) for the afferents exhibiting hyperbolic stimulus-response relationships. In contrast it ranged between 5 and 22 N for those exhibiting “nearly linear” relationships. A hypothetical model of the mechanics of the periodontal ligament supporting the F/(F + c) transform is proposed. 5. A general transfer function was developed to predict the instantaneous discharge rate of an individual afferent to arbitrary force profiles applied to the receptor bearing tooth.(ABSTRACT TRUNCATED AT 400 WORDS)
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献