Electrotonic architecture of cat gamma motoneurons

Author:

Burke R. E.1,Fyffe R. E.1,Moschovakis A. K.1

Affiliation:

1. Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland 20892.

Abstract

1. Experimental measures of input resistance, RN, and responses to brief hyperpolarizing current pulses were obtained in identified gamma-motoneurons in pentobarbital-anesthetized cats using conventional sharp micropipettes. The same cells were subsequently injected with horseradish peroxidase and completely reconstructed. In two cells, the electrophysiological and morphological data were of sufficient quality to permit estimation of specific membrane resistance, Rm, using biologically plausible ranges of specific cytoplasmic resistance, Ri, and membrane capacitance, Cm. 2. A combination of steady-state and dynamic computer models were employed to reconcile cell morphology with RN and the trajectories of the voltage decay following brief current pulses delivered to the soma. Simulated transient responses matched the tails of the observed transient when generated with the same current injections used experimentally. With Cm < or = 1.0 microF cm-2, the most satisfactory fits were obtained when the values of Rm assigned to the soma, Rms, were much smaller than the spatially uniform value assigned to the dendrites, Rmd and Ri = 60–70 omega cm. With Cm = 1.0 microF cm-2, Rms ranged from 260 to 427 omega cm2, whereas Rmd was approximately 33 K omega cm2. With Cm = 0.8 microF cm-2, Rms ranged from 235 to 357 omega cm2 and Rmd was between 62 and 68 K omega cm2. When Rm was constrained to be spatially uniform (i.e., Rm = Rms), implausibly high values of Cm (2.5–5.0 microF cm-2; Ri = 70 omega cm) were required to match the observed tail time constant, tau o,peel, but the simulated transients did not otherwise match those obtained experimentally. 3. With best fit values of Rms and Rmd, both gamma-motoneurons were electronically relatively compact (80% of total membrane area within 0.85 length constants from the soma). However, the calculated average steady-state inward attenuation factor (AFin) for voltages generated at any point within the dendrites increased rapidly with distance from the soma, reaching levels of < or = 90 and < or = 45 for the proximal 80% of membrane area for the respective motoneurons in the presence of a somatic shunt (Rms ≪ Rmd). If we assume that the somatic shunt is an artifact of sharp micropipette penetration (i.e., that Rms = Rmd for uninjured cells), then AFin decreased to < or = 20 and < or = 15, respectively, for the proximal 80% of cell membrane.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3