Affiliation:
1. Department of Electrical and Computer Engineering, Rice University, Houston 77251–1892.
Abstract
1. Neurons of the nodose ganglia provide the sole connection between many types of visceral sensory inputs and the central nervous system. Electrophysiological studies of isolated nodose neurons provide a practical means of measuring individual cell membrane currents and assessing their putative contributions to the overall response properties of the neuron and its terminations. Here, we present a comprehensive mathematical model of an isolated nodose sensory neuron that is based upon numerical fits to quantitative voltage- and current-clamp data recorded in our laboratory. Model development was accomplished using an iterative process of electrophysiological recordings, nonlinear parameter estimation, and computer simulation. This work is part of an integrative effort aimed at identifying and characterizing the fundamental ionic mechanisms participating in the afferent neuronal limb of the baroreceptor reflex. 2. The neuronal model consists of two parts: a Hodgkin-Huxley-type membrane model coupled to a lumped fluid compartment model that describes Ca2+ ion concentration dynamics within the intracellular and external perineuronal media. Calcium buffering via a calmodulin-type buffer is provided within the intracellular compartment. 3. The complete model accurately reproduces whole-cell voltage-clamp recordings of the major ion channel currents observed in enzymatically dispersed nodose sensory neurons. Specifically, two Na+ currents exhibiting fast (INaf) and slow tetrodotoxin (TTX)-insensitive (INas) kinetics; low- and high-threshold Ca2+ currents exhibiting transient (ICa,t) and long-lasting (ICa,n) dynamics, respectively; and outward K+ currents consisting of a delayed-rectifier current (IK), a transient outward current (I(t)) and a Ca(2+)-activated K+ current (IK,Ca). 4. Whole-cell current-clamp recordings of somatic action-potential dynamics were performed on enzymatically dispersed nodose neurons using the perforated patch-clamp technique. Stimulus protocols consisted of both short (< or = 2.0 ms) and long (> or = 200 ms) duration current pulses over a wide range of membrane holding potentials. These studies clearly revealed two populations of nodose neurons, often termed A- and C-type cells, which exhibit markedly different action-potential signatures and stimulus response properties. 5. Using a single set of equations, the model accurately reproduces the electrical behavior of both A- and C-type nodose neurons in response to a wide variety of stimulus conditions and membrane holding potentials. The structure of the model, as well as the majority of its parameters are the same for both A- and C-type implementations.(ABSTRACT TRUNCATED AT 400 WORDS)
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献