Modulation of associative memory function in a biophysical simulation of rat piriform cortex

Author:

Barkai E.1,Bergman R. E.1,Horwitz G.1,Hasselmo M. E.1

Affiliation:

1. Department of Psychology, Harvard University, Cambridge, Massachusetts 02138.

Abstract

1. Associative memory function was analyzed in a realistic biophysical simulation of rat piriform (olfactory) cortex containing 240 pyramidal cells and 58 each of two types of inhibitory interneurons. Pyramidal cell simulations incorporated six different intrinsic currents and three different synaptic currents. We investigated the hypothesis that acetylcholine sets the appropriate dynamics for learning within the network, whereas removal of cholinergic modulation sets the appropriate dynamics for recall. The associative memory function of the network was tested during recall after simulation of the cholinergic suppression of intrinsic fiber synaptic transmission and the cholinergic suppression of neuronal adaptation during learning. 2. Hebbian modification of excitatory synaptic connections between pyramidal cells during learning of patterns of afferent activity allowed the model to show the basic associative memory property of completion during recall in response to degraded versions of those patterns, as evaluated by a performance measure based on normalized dot products. 3. During learning of multiple overlapping patterns of afferent activity, recall of previously learned patterns interfered with the learning of new patterns. As more patterns were stored this interference could lead to the exponential growth of a large number of excitatory synaptic connections within the network. This runaway synaptic modification during learning led to excessive excitatory activity during recall, preventing the accurate recall of individual patterns. 4. Runaway synaptic modification of excitatory intrinsic connections could be prevented by selective suppression of synaptic transmission at these synapses during learning. This allowed effective recall of single learned afferent patterns in response to degraded versions of those patterns, without interference from other learned patterns. 5. During learning, cholinergic suppression of neuronal adaptation enhanced the activity of cortical pyramidal cells in response to afferent input, compensating for decreased activity due to suppression of intrinsic fiber synaptic transmission. This modulation of adaptation led to more rapid learning of afferent input patterns, as demonstrated by higher values of the performance measure. 6. During recall, when suppression of excitatory intrinsic synaptic transmission was removed, continued cholinergic suppression of neuronal adaptation led to the spread of excessive activity. More stable activity patterns during recall could be obtained when the cholinergic suppression of neuronal adaptation was removed at the same time as the cholinergic suppression of synaptic transmission. 7. A realistic biophysical simulation of the effects of acetylcholine on synaptic transmission and neuronal adaptation in the piriform cortex shows that these effects act together to set the appropriate dynamics for learning, whereas removal of both effects sets the appropriate dynamics for recall.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3