Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex

Author:

Kobatake E.1,Tanaka K.1

Affiliation:

1. Laboratory for Neural Information Processing, Institute of Physicaland Chemical Research, Saitama, Japan.

Abstract

1. To infer relative roles of cortical areas at different stages of the ventral visual pathway, we quantitatively examined visual responses of cells in V2, V4, the posterior part of the inferotemporal cortex (posterior IT), and the anterior part of the inferotemporal cortex (anterior IT), using anesthetized macaque monkeys. 2. The critical feature for the activation was first determined for each recorded cell by using a reduction method. We started from images of three-dimensional complex objects and simplified the image of effective stimuli step by step by eliminating a part of the features present in the image. The simplest feature that maximally activated the cell was determined as the critical feature. The response to the critical feature was then compared with responses of the same cell to a routine set of 32 simple stimuli, which included white and black bars of four different orientations and squares or spots of four different colors. 3. Cells that responded maximally to particular complex object features were found in posterior IT and V4 as well as in anterior IT. The cells in posterior IT and V4 were, however, different from the cells in anterior IT in that many of them responded to some extent to some simple features, that the size of the receptive field was small, and that they intermingled in single penetrations with cells that responded maximally to some simple features. The complex critical features in posterior IT and V4 varied; they consisted of complex shapes, combinations of a shape and texture, and combinations of a shape and color. 4. We suggest that local neuronal networks in V4 and posterior IT play an essential role in the formation of selective responses to complex object features.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3