Use of spike triggered averaging of muscle activity to quantify inputs to motoneuron pools

Author:

Fortier P. A.1

Affiliation:

1. Department of Anatomy and Neurobiology, Faculty of Medicine, University of Ottawa, Ontario, Canada.

Abstract

1. The goal of this study was to determine the extent to which postspike facilitation (PSpF) of electromyograms (EMGs) could be used to estimate the inputs to separate motoneuron pools, under conditions where there was wide variability in the parameters of muscle activity. These parameters included cancellation of motor unit action potentials (MUAPs), variations in EMG noise, and changes in MUAP amplitude and duration. A systematic series of computer simulations with increasing complexity were used to achieve this goal. The initial simulations (model I) included a premotoneuronal (PreM) cell connected to a single postsynaptic motoneuron (Mn), which in turn projected to a muscle. The next simulations (model II) included other target motoneurons with their efferents each projecting to separate muscles. The last simulations (model III) included more than one postsynaptic motoneuron per Mn-pool, as is the case in mammalian neuromuscular systems. 2. A sample simulation (model I) was performed to determine if the PreM-evoked effects were within physiologically observed values. A cross-correlogram (XC) calculated from a PreM cell and its target Mn, receiving a PreM-evoked excitatory postsynaptic potential (EPSP) of 0.5 mV, produced a XC peak area of 0.04 Mn-spikes/PreM-trigger. The PSpF of EMG activity evoked by this PreM cell had a mean percent increase of 4.6% (MPI = mean bin amplitude of PSpF above baseline/mean baseline level x 100). These XC and PSpF values were within the range of values previously obtained from animal experiments. 3. The magnitude of MUAP cancellation in the EMG was tested by calculating two spike-triggered averages (SpTAs) of EMGs from Mn-triggers (not PreM-triggers as in the other SpTAs): one using typical bipolar MUAPs and another using their rectified counterpart of only positive polarity to eliminate the possibility of MUAP cancellation. The PSpF calculated from bipolar spikes was 24.8% smaller than the one calculated using unipolar spikes. This cancellation could be greater or smaller depending on the state of parameters, such as the shape and number of MUAPs, that determine the probability of overlap between MUAP components of opposite polarity. All subsequent computer simulations used typical bipolar MUAPs. 4. A series of increasing motoneuron EPSP amplitudes were used to determine the relationship between PreM-Mn connection strength and PSpF area. A nearly perfect linear relationship between EPSP amplitude and PSpF area was obtained for SpTAs of rectified EMGs (r = 0.99). An equally linear relationship was obtained when averaging nonrectified EMGs (r = 0.99), but the smaller EPSPs or weaker synaptic connections were not detected.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3