Resonant behavior and frequency preferences of thalamic neurons

Author:

Puil E.1,Meiri H.1,Yarom Y.1

Affiliation:

1. Department of Neurobiology, Hebrew University, Jerusalem,Israel.

Abstract

1. We studied the voltage responses of thalamocortical neurons to a periodic current input of variable frequency, in slices of mediodorsal thalamus (guinea pig). The ratio of the Fourier transform of the voltage response to the Fourier transform of the oscillatory current input was used to calculate the frequency response of the neurons at different resting and imposed membrane potentials. 2. Most neurons displayed a resonant hump in the frequency response curve. A narrow band of low-frequency (2-4 Hz) resonance occurred near the resting level [-66 +/- 8 mV (SD)] and at imposed membrane potentials in a range of -60 to -80 mV. An additional wide band (12-26 Hz) of peak resonant frequencies was observed at depolarized levels. 3. The low-frequency resonance was insensitive to tetrodotoxin (TTX) application in concentrations (0.5-1 microM) that blocked a depolarization activated inward rectifier and Na(+)-dependent action potentials. TTX, however, eliminated the wide-band resonant hump centered at 12-26 Hz that we observed at depolarized membrane potentials. 4. Application of Ni2+ (0.5-1 mM) reversibly blocked all slow spikes and greatly reduced the low-frequency resonant humps, without changing the resting potential. Octanol in concentrations of 50 microM had similar effects. 5. Application of Cs+ (3-5 mM), a blocker of the hyperpolarization activated inward rectifier, produced a 5- to 10-mV depolarization and completely blocked the rectification. Cs+ did not alter the low-frequency resonant hump or its dependence on membrane voltage.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3