Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control

Author:

Tamber-Rosenau Benjamin J.12,Asplund Christopher L.3,Marois René1

Affiliation:

1. Department of Psychology, Vanderbilt University, Nashville, Tennessee

2. Department of Psychology, University of Houston, Houston, Texas

3. Division of Social Sciences, Yale-NUS College, Singapore

Abstract

The posterior lateral prefrontal cortex—specifically, the inferior frontal junction (IFJ)—is thought to exert a key role in the control of attention. However, the precise nature of that role remains elusive. During the voluntary deployment and maintenance of visuospatial attention, the IFJ is typically coactivated with a core dorsal network consisting of the frontal eye field and superior parietal cortex. During stimulus-driven attention, IFJ instead couples with a ventrolateral network, suggesting that IFJ plays a role in attention distinct from the dorsal network. Because IFJ rapidly switches activation patterns to accommodate conditions of goal-directed and stimulus-driven attention (Asplund CL, Todd JJ, Snyder AP, Marois R. Nat Neurosci 13: 507–512, 2010), we hypothesized that IFJ’s primary role is to dynamically reconfigure attention rather than to maintain attention under steady-state conditions. This hypothesis predicts that in a goal-directed visuospatial cuing paradigm IFJ would transiently deploy attention toward the cued location, whereas the dorsal attention network would maintain attentional weights during the delay between cue and target presentation. Here we tested this hypothesis with functional magnetic resonance imaging while subjects were engaged in a Posner cuing task with variable cue-target delays. Both IFJ and dorsal network regions were involved in transient processes, but sustained activity was far more evident in the dorsal network than in IFJ. These results support the account that IFJ primarily acts to shift attention whereas the dorsal network is the main locus for the maintenance of stable attentional states. NEW & NOTEWORTHY Goal-directed visuospatial attention is controlled by a dorsal fronto-parietal network and lateral prefrontal cortex. However, the relative roles of these regions in goal-directed attention are unknown. Here we present evidence for their dissociable roles in the transient reconfiguration and sustained maintenance of attentional settings: while maintenance of attentional settings is confined to the dorsal network, the configuration of these settings at the beginning of an attentional episode is a function of lateral prefrontal cortex.

Funder

HHS | NIH | National Institute of Mental Health (NIMH)

HHS | NIH | National Eye Institute (NEI)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3