Slow Oscillation State Facilitates Epileptiform Events in the Hippocampus

Author:

Nazer Farhang,Dickson Clayton T.

Abstract

In mesial temporal lobe (MTL) epilepsy, which typically involves the hippocampus (HPC), epileptiform events are enhanced during slow wave sleep (SWS). It remains unclear how and why the electroencephalographic (EEG) states that constitute SWS might predispose the HPC to this type of pathological activity. Recently our laboratory has described a novel state of deactivated hippocampal EEG activity that occurs during both SWS and urethan anesthesia: the slow oscillation (SO). This activity is characterized by a high-amplitude ∼1-Hz signal, high synchrony within the hippocampus, and a dynamic coordination with neocortical SO. To assess how this activity state might influence epileptiform discharges, we studied the properties of stimulation-evoked and spontaneous epileptiform events elicited in the HPC of urethan-anesthetized rats. We compared those elicited during the SO to those occurring during the theta rhythm. The average duration but not the amplitude of evoked afterdischarges (ADs) was consistently larger during the SO. In addition, spontaneous epileptiform events were more frequent and of higher amplitude during the SO. Last, the bilateral propagation of both ADs and spontaneous events in the hippocampus was enhanced during the SO. These results imply that the threshold for the generation and propagation of epileptiform activity in the hippocampus is lowered during the SO and that this state may be a seed for the initiation, maintenance, and generalization of MTL epilepsy. Further examination of the pathophysiology of sleep-epilepsy interactions in the HPC will be of benefit for an understanding of the mechanisms, prognosis, and therapy for this form of epilepsy.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3