mTOR regulates peripheral nerve response to tensile strain

Author:

Love James M.1,Bober Brian G.2,Orozco Elisabeth34,White Amanda T.3,Bremner Shannon N.34,Lovering Richard M.5ORCID,Schenk Simon3,Shah Sameer B.234

Affiliation:

1. Fischell Department of Bioengineering, University of Maryland, College Park, Maryland;

2. Department of Bioengineering, University of California-San Diego, La Jolla, California;

3. Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, California;

4. Veterans Affairs San Diego Healthcare System, San Diego, California; and

5. Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland

Abstract

While excessive tensile strain can be detrimental to nerve function, strain can be a positive regulator of neuronal outgrowth. We used an in vivo rat model of sciatic nerve strain to investigate signaling mechanisms underlying peripheral nerve response to deformation. Nerves were deformed by 11% and did not demonstrate deficits in compound action potential latency or amplitude during or after 6 h of strain. As revealed by Western blotting, application of strain resulted in significant upregulation of mammalian target of rapamycin (mTOR) and S6 signaling in nerves, increased myelin basic protein (MBP) and β-actin levels, and increased phosphorylation of neurofilament subunit H (NF-H) compared with unstrained (sham) contralateral nerves ( P < 0.05 for all comparisons, paired two-tailed t-test). Strain did not alter neuron-specific β3-tubulin or overall nerve tubulin levels compared with unstrained controls. Systemic rapamycin treatment, thought to selectively target mTOR complex 1 (mTORC1), suppressed mTOR/S6 signaling, reduced levels of MBP and overall tubulin, and decreased NF-H phosphorylation in nerves strained for 6 h, revealing a role for mTOR in increasing MBP expression and NF-H phosphorylation, and maintaining tubulin levels. Consistent with stretch-induced increases in MBP, immunolabeling revealed increased S6 signaling in Schwann cells of stretched nerves compared with unstretched nerves. In addition, application of strain to cultured adult dorsal root ganglion neurons showed an increase in axonal protein synthesis based on a puromycin incorporation assay, suggesting that neuronal translational pathways also respond to strain. This work has important implications for understanding mechanisms underlying nerve response to strain during development and regeneration.NEW & NOTEWORTHY Peripheral nerves experience tensile strain (stretch) during development and movement. Excessive strain impairs neuronal function, but moderate strains are accommodated by nerves and can promote neuronal growth; mechanisms underlying these phenomena are not well understood. We demonstrated that levels of several structural proteins increase following physiological levels of nerve strain and that expression of a subset of these proteins is regulated by mTOR. Our work has important implications for understanding nerve development and strain-based regenerative strategies.

Funder

National Science Foundation (NSF)

UCSD Academic Senate

HHS | National Institutes of Health (NIH)

U.S. Department of Veterans Affairs (VA)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3