Effects of intrauterine insulin-like growth factor-1 therapy for fetal growth restriction on adult metabolism and body composition are sex specific

Author:

Spiroski Ana-Mishel1ORCID,Oliver Mark Hope1,Jaquiery Anne Louise1,Gunn Travis Dane1,Harding Jane Elizabeth1,Bloomfield Frank Harry1ORCID

Affiliation:

1. The Liggins Institute, University of Auckland, Auckland, New Zealand

Abstract

Fetal growth restriction (FGR) is associated with compromised growth and metabolic function throughout life. Intrauterine therapy of FGR with intra-amniotic insulin-like growth factor-1 (IGF1) enhances fetal growth and alters perinatal metabolism and growth in a sex-specific manner, but the adult effects are unknown. We investigated the effects of intra-amniotic IGF1 treatment of FGR on adult growth and body composition, adrenergic sensitivity, and glucose-insulin axis regulation. Placental embolization-induced FGR was treated with four weekly doses of 360 µg intra-amniotic IGF1 (FGRI) or saline (FGRS). Offspring were raised to adulthood (18 mo: FGRI, n = 12 females, 12 males; FGRS, n = 13 females, 10 males) alongside offspring from unembolized and untreated sheep (CON; n = 12 females, 21 males). FGRI females had increased relative lean mass compared with CON but not FGRS ( P < 0.05; 70.6 ± 8.2% vs. 61.4 ± 8.2% vs. 67.6 ± 8.2%), decreased abdominal adipose compared with CON and FGRS ( P < 0.05; 43.7 ± 1.2% vs. 49.3 ± 0.9% vs. 48.5 ± 1.0%), increased glucose utilization compared with FGRS but not CON ( P < 0.05; 9.6 ± 1.0 vs. 6.0 ± 0.9 vs. 7.6 ± 0.9 mg·kg−1·min−1), and increased β-hydroxybutyric acid:nonesterified fatty acid ratio in response to adrenaline compared with CON and FGRS ( P < 0.05; 3.9 ± 1.4 vs. 1.1 ± 1.4 vs. 1.8 ± 1.4). FGRS males were smaller and lighter compared with CON but not FGRI ( P < 0.05; 86.8 ± 6.3 vs. 93.5 ± 6.1 vs. 90.7 ± 6.3 kg), with increased peak glucose concentration (10%) in response to a glucose load but few other differences. These effects of intra-amniotic IGF1 therapy on adult body composition, glucose-insulin axis function, and adrenergic sensitivity could indicate improved metabolic regulation during young adulthood in female FGR sheep.

Funder

Manatu Hauora | Health Research Council of New Zealand

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3