Abstract
There is no agreement about the immediate mechanism by which insulin hyperpolarizes skeletal muscle, adipocytes, and myocardium. Of three candidates, one has been eliminated; the hyperpolarization is not secondary to an increase in intracellular [K]. There are reports that insulin hyperpolarizes by increasing relative permeability to K compared with that to Na ions, and other reports that insulin stimulates an ouabain-sensitive electrogenic Na-K exchange pump. Our evidence has been interpreted to support the former and deny the latter, when rat skeletal muscle is bathed at normal [K]. Crucial evidence for the latter has not been reported: insulin hyperpolarizes to a potential more negative than the K equilibrium potential. We now report that when rat caudofemoralis muscle is incubated with insulin at normal extracellular [K], then depolarized by increasing extracellular [K] to 38.4 mM, by equimolar substitution of KCl for NaCl, there is hyperpolarization compared with potentials of muscles treated similarly with respect to [K] but without insulin. Under these circumstances, the membrane potential in the presence of insulin is more negative than the new K equilibrium potential, and, in contrast to our previous experience with muscles bathed only in normal [K], the hyperpolarization in high [K] is reduced or eliminated by ouabain.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献