Pregnancy and diet-related changes in the maternal gut microbiota following exposure to an elevated linoleic acid diet

Author:

Shrestha Nirajan1ORCID,Sleep Simone L.1,Cuffe James S. M.12ORCID,Holland Olivia J.1,McAinch Andrew J.34,Dekker Nitert Marloes5ORCID,Hryciw Deanne H.36ORCID

Affiliation:

1. School of Medical Science, Griffith University, Southport, Queensland, Australia

2. School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia

3. Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia

4. Australian Institute for Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia

5. School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia

6. School of Environment and Science, Griffith University, Nathan, Queensland, Australia

Abstract

Dietary intakes of linoleic acid (LA) have increased, including in women of reproductive age. Changes in maternal gut microbiome have been implicated in the metabolic adaptions that occur during pregnancy. We aimed to investigate whether consumption of a diet with elevated LA altered fecal microbiome diversity before and during pregnancy. Female Wistar-Kyoto rats consumed a high-LA diet (HLA: 6.21% of energy) or a low-LA diet (LLA: 1.44% of energy) for 10 wk before mating and during pregnancy. DNA was isolated from fecal samples before pregnancy [embryonic day 0 (E0)], or during pregnancy at E10 and E20. The microbiome composition was assessed with 16S rRNA sequencing. At E0, the beta-diversity of LLA and HLA groups differed with HLA rats having significantly lower abundance of the genera Akkermansia, Peptococcus, Sutterella, and Xo2d06 but higher abundance of Butyricimonas and Coprococcus. Over gestation, in LLA but not HLA rats, there was a reduction in alpha-diversity and an increase in beta-diversity. In the LLA group, the abundance of Akkermansia, Blautia, rc4.4, and Streptococcus decreased over gestation, whereas Coprococcus increased. In the HLA group; only the abundance of Butyricimonas decreased. At E20, there were no differences in alpha- and beta-diversity, and the abundance of Roseburia was significantly increased in the HLA group. In conclusion, consumption of a HLA diet alters gut microbiota composition, as does pregnancy in rats consuming a LLA diet. In pregnancy, consumption of a HLA diet does not alter gut microbiota composition.

Funder

Allen Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3