PGF2 alpha and PGE2 binding to rat myometrium during gestation, parturition, and postpartum

Author:

Molnar M.1,Hertelendy F.1

Affiliation:

1. Department of Obstetrics and Gynecology, St. Louis University Schoolof Medicine, Missouri 63104.

Abstract

The specific binding of prostaglandins (PG) F2 alpha and E2 was studied in a rat myometrial membrane-enriched fraction during the latter part of gestation and parturition, as well as in the postpartal period. Tritiated PGE2 and PGF2 alpha binding was specific, saturable, time dependent, and directly proportional to the amount of membrane protein. Scatchard analysis indicated the presence of high-affinity (Kd2) and low-affinity (Kd2) binding sites for both PGs. The affinity of both binding sites for PGF2 alpha and the apparent Kd2 for PGE2 remained essentially the same throughout gestation and post-partially and were similar to nonpregnant rats. The apparent Kd1 of PGE2, however, increased by 10-fold from day 21 of gestation to 1 day postpartum. Although the maximal binding capacity of the high-affinity (Bmax1) and low-affinity (Bmax2) binding sites of PGF2 alpha showed a nonsignificant increase compared with prepartum values, reaching maximal values 12-24 h postpartum, those of PGE2 showed a significant increase on the third day after delivery. The concentration of prostanoids in uterine venous plasma and amniotic fluid increased significantly with approaching parturition, whereas plasma progesterone decreased, raising the estradiol-progesterone ratio 25-fold. After unilateral fetectomy, the binding sites for PGF2 alpha and PGE2 increased significantly compared with the contralateral pregnant horns. Administration of the PG synthetase inhibitor, indomethacin, also increased two- to threefold both PGF2 alpha and PGE2 binding compared with the placebo group, whereas intrauterine administration of PGF2 alpha and PGE2 significantly reduced it.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3