Affiliation:
1. Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and
2. Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas
Abstract
Despite the capacity of estrogens to favorably regulate body composition and glucose homeostasis, their use to combat obesity and type 2 diabetes is not feasible, because they promote sex steroid-responsive cancers. The novel selective estrogen receptor modulator (SERM) bazedoxifene acetate (BZA) uniquely antagonizes both breast cancer development and estrogen-related changes in the female reproductive tract. How BZA administered with conjugated estrogen (CE) or alone impacts metabolism is unknown. The effects of BZA or CE + BZA on body composition and glucose homeostasis were determined in ovariectomized female mice fed a Western diet for 10–12 wk. In contrast to vehicle, estradiol (E2), CE, BZA, and CE + BZA equally prevented body weight gain by 50%. In parallel, all treatments caused equal attenuation of the increase in body fat mass invoked by the diet as well as the increases in subcutaneous and visceral white adipose tissue. Diet-induced hepatic steatosis was attenuated by E2 or CE, and BZA alone or with CE provided even greater steatosis prevention; all interventions improved pyruvate tolerance tests. Glucose tolerance tests and HOMA-IR were improved by E2, CE, and CE + BZA. Whereas E2 or CE alone invoked a uterotrophic response, BZA alone or CE + BZA had negligible impact on the uterus. Thus, CE + BZA affords protection from diet-induced adiposity, hepatic steatosis, and insulin resistance with minimal impact on the female reproductive tract in mice. These combined agents may provide a valuable new means to favorably regulate body composition and glucose homeostasis and combat fatty liver.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献