Abstract
Atrial natriuretic peptide (ANP) inhibits aldosterone secretion evoked by its physiological secretagogues by a mechanism(s) likely to involve intracellular messengers. When one examines the results of various investigations so far, this premise, although not definitive yet, seems to be supported. Therefore a brief perspective on the cellular messengers of the various secretagogues is provided before the inquiry into the possible mechanism of action of ANP. The receptors of ANP in the adrenal cells have been identified and characterized. ANP inhibits adenylate cyclase in various tissues through an inhibitory G protein, which appears to explain in part the inhibitory effect of ANP on adrenocorticotropin-induced aldosterone secretion. However, there could be other possible effects of ANP as discussed. ANP probably inhibits aldosterone secretion evoked by angiotensin II and potassium by interfering with the appropriate changes in calcium flux and cell calcium concentration, concomitants of stimulation by these secretagogues. The potential modes of these effects are probed. The role of guanosine 3',5'-cyclic monophosphate, which is increased by receptor activation of guanylate cyclase by ANP and is thought to play a major role in the biological effects of ANP in some other tissues, remains controversial in the aldosterone-lowering effect of ANP, and this is also discussed extensively in this review.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献