Affiliation:
1. Department of Internal Medicine, Washington University School ofMedicine, St. Louis, Missouri 63110, USA.
Abstract
Glucose transport in skeletal muscle can be stimulated by insulin and also by contractions and hypoxia. Activation of protein kinase C (PKC) stimulates glucose transport in muscle and other insulin-responsive cells. This study was performed to determine if the diacylglycerol (DAG)/phorbol ester-sensitive PKC isoforms participate in insulin and/or hypoxia-stimulated glucose transport in skeletal muscle. The phorbol ester 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA) induced a three- to fourfold increase in glucose transport in rat epitrochlearis muscle. The effects of dPPA on glucose transport and on cell surface GLUT-4 were completely additive to the maximal effects of insulin or hypoxia. Phorbol ester treatment induced 5- to 10-fold increases in phosphorylation of the myristoylated alanine-rich C kinase substrate protein in muscle, whereas insulin and hypoxia had negligible effects. Calphostin C, an inhibitor of DAG-sensitive PKC isoforms, decreased glucose transport stimulation by dPPA but not by insulin or hypoxia. These results provide evidence that activation of DAG/phorbol ester-sensitive PKCs is not involved in the pathways by which either insulin or hypoxia stimulates muscle glucose transport. They also show that activation of this group of PKCs increases glucose transport by a mechanism that is independent of and additive to the effects of insulin or hypoxia.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献