Affiliation:
1. Division of Laboratory Medicine, Department of Pathology, and
2. Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
Abstract
The polyol 1,5-anhydroglucitol (AG) present in human plasma is derived largely from ingestion and is excreted unmetabolized. Reduction of plasma [AG] has been noted in diabetics and is due to accelerated excretion of AG during hyperglycemia. Plasma [AG] has therefore been proposed as a marker for glycemic control. A precise understanding of its utility relies on a quantitative understanding of the mass balance for AG. In this study, non-steady-state data from the literature were analyzed to develop a dynamic mass balance model for AG that is based on the two-compartment model proposed by Yamanouchi et al. [T. Yamanouchi, Y. Tachibana, H. Akanuma, S. Minoda, T. Shinohara, H. Moromizato, H. Miyashita, and I. Akaoka. Am. J. Physiol. 263 ( Endocrinol. Metab. 26): E268—E273, 1992]. The data are consistent with a model in which exchange between tissue and plasma pools is rapid and in which the tissue compartment mass is two to three times the mass of the plasma compartment. According to model estimates, accelerated excretion of AG due to hyperglycemia can cause marked net depletion of total AG over a time scale of days. Recovery from a depleted state is slow because the total body capacity represents >5 wk of normal intake. Accordingly, AG monitoring should be able to indicate the presence of past glucosuric hyperglycemic episodes during a period of days to weeks, as well as provide information on the extent to which high deviations from the average plasma glucose concentration are operative.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献