A kinetic mass balance model for 1,5-anhydroglucitol: applications to monitoring of glycemic control

Author:

Stickle Douglas1,Turk John12

Affiliation:

1. Division of Laboratory Medicine, Department of Pathology, and

2. Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

The polyol 1,5-anhydroglucitol (AG) present in human plasma is derived largely from ingestion and is excreted unmetabolized. Reduction of plasma [AG] has been noted in diabetics and is due to accelerated excretion of AG during hyperglycemia. Plasma [AG] has therefore been proposed as a marker for glycemic control. A precise understanding of its utility relies on a quantitative understanding of the mass balance for AG. In this study, non-steady-state data from the literature were analyzed to develop a dynamic mass balance model for AG that is based on the two-compartment model proposed by Yamanouchi et al. [T. Yamanouchi, Y. Tachibana, H. Akanuma, S. Minoda, T. Shinohara, H. Moromizato, H. Miyashita, and I. Akaoka. Am. J. Physiol. 263 ( Endocrinol. Metab. 26): E268—E273, 1992]. The data are consistent with a model in which exchange between tissue and plasma pools is rapid and in which the tissue compartment mass is two to three times the mass of the plasma compartment. According to model estimates, accelerated excretion of AG due to hyperglycemia can cause marked net depletion of total AG over a time scale of days. Recovery from a depleted state is slow because the total body capacity represents >5 wk of normal intake. Accordingly, AG monitoring should be able to indicate the presence of past glucosuric hyperglycemic episodes during a period of days to weeks, as well as provide information on the extent to which high deviations from the average plasma glucose concentration are operative.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3