Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent

Author:

Roberts C. K.1,Barnard R. J.1,Scheck S. H.1,Balon T. W.1

Affiliation:

1. Department of Physiological Science, University of California, LosAngeles 90024, USA.

Abstract

It has been suggested that there are separate insulin-stimulated and contraction-stimulated glucose transport pathways in skeletal muscle. This study examined the effects of nitric oxide on glucose transport in rat skeletal muscle by use of an isolated sarcolemmal membrane preparation and the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME), administered in the drinking water (1 mg/ml). Female Sprague-Dawley rats were divided into five groups: control, acute exercise, acute exercise+L-NAME, insulin stimulated, and insulin stimulated+L-NAME. Exercise (45 min of exhaustive treadmill running) increased glucose transport (37 +/- 2 to 76 +/- 5 pmol.mg-1.15 s-1) and this increase was completely inhibited by L-NAME (40 +/- 4 pmol.mg-1.15 s-1). A maximum dose of insulin increased glucose transport (87 +/- 10 pmol.mg-1.15 s-1), and adding L-NAME had no effect (87 +/- 11 pmol.mg-1.15 s-1). In addition, exercise, but not exercise+L-NAME, increased sarcolemma GLUT-4 content. This study confirms that there are separate pathways for contraction- and insulin-stimulated glucose transport. More importantly, although exercise and insulin both significantly increased glucose transport, L-NAME had no effect on insulin-stimulated glucose transport but blocked the exercise-stimulated transport. We conclude that nitric oxide is involved in the signal transduction mechanism to increase glucose transport during exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3