Regulation of glucose production during exercise at 80% of VO2peak in untrained humans

Author:

Coggan A. R.1,Raguso C. A.1,Gastaldelli A.1,Williams B. D.1,Wolfe R. R.1

Affiliation:

1. Metabolism Unit, Shriners Burns Institute, University of Texas Medical Branch, Galveston 77550, USA.

Abstract

To determine whether alterations in insulin and/or glucagon secretion play an important role in stimulating glucose production (Ra) during intense but submaximal exercise, we studied six untrained subjects during 30 min of cycling at 80% of peak oxygen uptake on two occasions: once under control conditions and once when alterations in insulin and glucagon secretion were prevented with the use of the pancreatic islet clamp technique. In the latter experiments, glucose was infused during exercise to match glycemia with control levels. Glucose kinetics were measured in both trials using a primed, continuous infusion of [6,6-2H]glucose. In the control trial, glucose Ra rose from 11.9 +/- 0.8 mumol.min-1.kg-1 at rest to 42.5 +/- 4.3 mumol.min-1.kg-1 by the end of exercise. A similar increment was observed in the islet clamp experiments, with endogenous Ra peaking at 37.2 +/- 7.9 mumol.min-1.kg-1. This was true even through glucagon concentration did not change from basal and insulin concentration actually rose (the latter apparently due to a decrease in insulin clearance during intense exercise). Thus neither decrements in insulin or increments in glucagon are apparently required to stimulate glucose Ra under the present conditions. Because epinephrine levels rose only slightly, it appears that either neurally released norepinephrine or some other, as yet unidentified, factor is responsible for stimulating glucose Ra during intense but submaximal exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3