Moderate exercise at energy balance does not affect 24-h leucine oxidation or nitrogen retention in healthy men

Author:

el-Khoury A. E.1,Forslund A.1,Olsson R.1,Branth S.1,Sjodin A.1,Andersson A.1,Atkinson A.1,Selvaraj A.1,Hambraeus L.1,Young V. R.1

Affiliation:

1. Laboratory of Human Nutrition, School of Science, Massachusetts Institute of Technology, Cambridge 02142, USA.

Abstract

Short-term metabolic experiments have revealed that physical exercise increases the oxidation of leucine, which has been interpreted to indicate an increased requirement for dietary protein in physically active subjects. Because it may be inaccurate to extrapolate measurements of amino acid oxidation made over a few hours to the entire day, we have carried out a continuous 24-h intravenous [1-13C]leucine/[15N]urea tracer study in eight healthy adult men. Their diet supplied 1 g protein.kg-1.day-1, and exercise (mean maximal O2 consumption 46%) was for 90 min during the 12-h fast and 12-h fed periods of the day. Subjects were adapted to the diet and exercise regimen for 6 days. Then, on day 7, they were dressed in the University of Uppsala energy metabolic unit's direct calorimeter suit, were connected to an open-hood indirect calorimeter, and received the tracers. Exercise increased leucine oxidation by approximately 50 and 30% over preexercise rates for fast and fed periods, respectively. This increase amounted to approximately 4-7% of daily leucine oxidation. Subjects remained in body leucine equilibrium (balance -4.6 +/- 10.5 mg.kg-1.day-1; -3.6 +/- 8.3% of intake; P = not significant from zero balance). Therefore, moderate exercise did not cause a significant deterioration in leucine homeostasis at a protein intake of 1 g.kg-1.day-1. These findings underscore the importance of carrying out precise, continuous, 24-h measurements of whole body leucine kinetics; this model should be of value in studies concerning the quantitative interactions among physical exercise, energy/protein metabolism, and diet in humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3