Altered cardiovascular regulation in arginine vasopressin-overexpressing transgenic rat

Author:

Tachikawa Kazushige,Yokoi Hisashi,Nagasaki Hiroshi,Arima Hiroshi,Murase Takashi,Sugimura Yoshihisa,Miura Yoshitaka,Hirabayashi Masumi,Oiso Yutaka

Abstract

Although arginine vasopressin (AVP), an antidiuretic hormone, has been widely acknowledged to play an important role in cardiovascular regulation via V1a receptors (V1aR), its precise significance remains unclear. In this study, we investigated the effects of long-standing high plasma AVP status on cardiovascular regulation in the AVP-overexpressing transgenic (Tg) rat. Adult male homozygous Tg rats were compared with age-matched normal Sprague-Dawley rats as controls. There were no significant differences in mean arterial blood pressure (BP; MABP) or heart rate between Tg and control rats in the basal state. Subcutaneous injection of AVP significantly increased MABP in controls but did not cause any apparent increase in MABP in Tg rats. BP recovery from hemorrhage-induced hypotension was significantly delayed in Tg compared with control rats. Pretreatment with a selective V1aR antagonist, OPC-21268, which is thought to restore the downregulation of V1aR, markedly improved both of these impaired responses. Northern blot analysis confirmed that decreased expression of V1aR mRNA and pretreatment with V1aR antagonist significantly restored the downregulation of V1aR mRNA. These results suggest that the Tg rat has decreased sensitivity to the hypertensive effect of AVP due to downregulation of V1aR, which may function as an adaptive mechanism to maintain normal BP against chronic hypervasopressinemia. In addition, impaired restoration of BP after hemorrhage-induced hypotension in Tg rats supports a physiological role of AVP in cardiovascular regulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3