Role of enhanced glucocorticoid receptor sensitivity in inflammation in PTSD: insights from computational model for circadian-neuroendocrine-immune interactions

Author:

Somvanshi Pramod R.1,Mellon Synthia H.2,Yehuda Rachel34,Flory Janine D.34,Makotkine Iouri34,Bierer Linda34,Marmar Charles5,Jett Marti6,Doyle Francis J.1

Affiliation:

1. Harvard John Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

2. Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, California

3. Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York

4. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York

5. Department of Psychiatry, New York Langone Medical School, New York, New York

6. Integrative Systems Biology, U.S. Army Medical Research and Materiel Command, U.S. Army Center for Environmental Health Research (USACEHR), Fort Detrick, Frederick, Maryland

Abstract

Although glucocorticoid resistance contributes to increased inflammation, individuals with posttraumatic stress disorder (PTSD) exhibit increased glucocorticoid receptor (GR) sensitivity along with increased inflammation. It is not clear how inflammation coexists with a hyperresponsive hypothalamic-pituitary-adrenal (HPA) axis. To understand this better, we developed and analyzed an integrated mathematical model for the HPA axis and the immune system. We performed mathematical simulations for a dexamethasone (DEX) suppression test and IC50-dexamethasone for cytokine suppression by varying model parameters. The model analysis suggests that increasing the steepness of the dose-response curve for GR activity may reduce anti-inflammatory effects of GRs at the ambient glucocorticoid levels, thereby increasing proinflammatory response. The adaptive response of proinflammatory cytokine-mediated stimulatory effects on the HPA axis is reduced due to dominance of the GR-mediated negative feedback on the HPA axis. To verify these hypotheses, we analyzed the clinical data on neuroendocrine variables and cytokines obtained from war-zone veterans with and without PTSD. We observed significant group differences for cortisol and ACTH suppression tests, proinflammatory cytokines TNFα and IL6, high-sensitivity C-reactive protein, promoter methylation of GR gene, and IC50-DEX for lysozyme suppression. Causal inference modeling revealed significant associations between cortisol suppression and post-DEX cortisol decline, promoter methylation of human GR gene exon 1F ( NR3C1-1F), IC50-DEX, and proinflammatory cytokines. We noted significant mediation effects of NR3C1-1F promoter methylation on inflammatory cytokines through changes in GR sensitivity. Our findings suggest that increased GR sensitivity may contribute to increased inflammation; therefore, interventions to restore GR sensitivity may normalize inflammation in PTSD.

Funder

U S Army Medical Research and Material Command

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3