G protein-coupled estrogen receptor 1 mediates relaxation of coronary arteries via cAMP/PKA-dependent activation of MLCP

Author:

Yu Xuan1,Li Fen12,Klussmann Enno3,Stallone John N.41,Han Guichun41

Affiliation:

1. Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, Texas;

2. College of Life Science, Henan Normal University, Xinxiang, Henan Province, China; and

3. Anchored Signaling, Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch, Berlin, Germany

4. Women's Health Division, Michael E. DeBakey Institute, and

Abstract

Activation of GPER exerts a protective effect in hypertension and ischemia-reperfusion models and relaxes arteries in vitro. However, our understanding of the mechanisms of GPER-mediated vascular regulation is far from complete. In the current study, we tested the hypothesis that GPER-induced relaxation of porcine coronary arteries is mediated via cAMP/PKA signaling. Our findings revealed that vascular relaxation to the selective GPER agonist G-1 (0.3–3 μM) was associated with increased cAMP production in a concentration-dependent manner. Furthermore, inhibition of adenylyl cyclase (AC) with SQ-22536 (100 μM) or of PKA activity with either Rp-8-CPT-cAMPS (5 μM) or PKI (5 μM) attenuated G-1-induced relaxation of coronary arteries preconstricted with PGF2α (1 μM). G-1 also increased PKA activity in cultured coronary artery smooth muscle cells (SMCs). To determine downstream signals of the cAMP/PKA cascade, we measured RhoA activity in cultured human and porcine coronary SMCs and myosin-light chain phosphatase (MLCP) activity in these artery rings by immunoblot analysis of phosphorylation of myosin-targeting subunit protein-1 (p-MYPT-1; the MLCP regulatory subunit). G-1 decreased PGF2α-induced p-MYPT-1, whereas Rp-8-CPT-cAMPS prevented this inhibitory effect of G-1. Similarly, G-1 inhibited PGF2α-induced phosphorylation of MLC in coronary SMCs, and this inhibitory effect was also reversed by Rp-8-CPT-cAMPS. RhoA activity was downregulated by G-1, whereas G36 (GPER antagonist) restored RhoA activity. Finally, FMP-API-1 (100 μM), an inhibitor of the interaction between PKA and A-kinase anchoring proteins (AKAPs), attenuated the effect of G-1 on coronary artery relaxation and p-MYPT-1. These findings demonstrate that localized cAMP/PKA signaling is involved in GPER-mediated coronary vasodilation by activating MLCP via inhibition of RhoA pathway.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3