Affiliation:
1. Department of Medicine, Medical University of South Carolina,Charleston 29425.
Abstract
Denervation (24 h) of skeletal muscle causes severe postreceptor insulin resistance of glucose transport and glycogen synthesis that is demonstrable in isolated muscles after short (30 min) preincubations. After longer preincubations (2-4 h), the insulin response of glucose transport increased to normal, whereas glycogen synthesis remained insulin resistant. Basal and insulin-stimulated amino acid transport were significantly lower in denervated muscles than in controls after short or long incubations, although the percentage stimulation of transport by insulin was not significantly different. The development of glucose transport insulin resistance after denervation was not attributable to increased sensitivity to glucocorticoids or adenosine. The selective in vitro reversal of glucose transport insulin resistance was not dependent on medium composition, did not require protein or prostaglandin synthesis, and could not be attributed to release of a positive regulator into the medium. The data suggest 1) the insulin receptor in muscle stimulates glucose transport by a signaling pathway that is not shared by other insulin-sensitive effector systems, and 2) denervation may affect insulin receptor signal transduction at more than one site.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献