Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding

Author:

Coate Katie C.1,Kraft Guillaume1,Moore Mary Courtney1,Smith Marta S.1,Ramnanan Christopher1,Irimia Jose M.2,Roach Peter J.2,Farmer Ben1,Neal Doss W.13,Williams Phil34,Cherrington Alan D.1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee;

2. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana;

3. Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and

4. Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee

Abstract

In dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3–4 times basal) and glucagon (basal). The hepatic glucose load (HGL) was doubled during the clamp using peripheral vein (Pe) glucose infusion in the first 90 min (P1) and portal vein (4 mg·kg−1·min−1) plus Pe glucose infusion during the final 90 min (P2). During P2, HGU was 2.8 ± 0.2, 1.0 ± 0.2, and 0.8 ± 0.2 mg·kg−1·min−1 in CTR, HFA, and HFR, respectively ( P < 0.05 for HFA and HFR vs. CTR). Compared with CTR, hepatic GK protein and catalytic activity were reduced ( P < 0.05) 35 and 56%, respectively, in HFA, and 53 and 74%, respectively, in HFR. Liver glycogen concentrations were 20 and 38% lower in HFA and HFR than CTR ( P < 0.05). Hepatic Akt phosphorylation was decreased ( P < 0.05) in HFA (21%) but not HFR. Thus, HFR impaired hepatic GK and glycogen more than HFA, whereas HFA reduced insulin signaling more than HFR. HFA and HFR effects were not additive, suggesting that they act via the same mechanism or their effects converge at a saturable step.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Central Control of Glucose Homeostasis;Textbook of Diabetes;2024-01-12

2. Molecular aspects of fructose metabolism and metabolic disease;Cell Metabolism;2021-12

3. Exercise-Induced Improvements to Whole Body Glucose Metabolism in Type 2 Diabetes: The Essential Role of the Liver;Frontiers in Endocrinology;2020-08-28

4. Pathogenesis of Insulin Resistance;Cellular Metabolism and Related Disorders;2020-07-15

5. Bromocriptine mesylate improves glucose tolerance and disposal in a high-fat-fed canine model;American Journal of Physiology-Endocrinology and Metabolism;2020-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3