Author:
Chai Weidong,Wu Yangsong,Li Guolian,Cao Wenhong,Yang Zequan,Liu Zhenqi
Abstract
Myocardial ischemia-reperfusion injury contributes significantly to morbidity and mortality in patients with diabetes. Insulin decreases myocardial infarct size in animals and the rate of apoptosis in cultured cells. Ischemia-reperfusion activates p38 mitogen-activated protein kinase (MAPK), which regulates cellular apoptosis. To examine whether p38 MAPK affects insulin's cardioprotection against ischemia-reperfusion injury, we studied overnight-fasted adult male rats by use of an in vivo rat model of myocardial ischemia-reperfusion. A euglycemic clamp (3 mU·min−1·kg−1) was begun either 10 min before ischemia (InsulinBI), 5 min before reperfusion (InsulinBR), or 30 min after the onset of reperfusion (InsulinAR), and continued until the end of the study. Compared with saline control, insulin decreased the infarct size in both InsulinBI ( P < 0.001) and InsulinBR ( P < 0.02) rats but not in InsulinAR rats. The ischemic area showed markedly increased phosphorylation of p38 MAPK compared with the nonischemic area in saline animals. Acute activation of p38 MAPK with anisomycin (2 mg/kg iv 10 min before ischemia) had no effect on infarct size in saline rats. However, it completely abolished insulin's protective effect in InsulinBI and InsulinBR rats. Activation of p38 MAPK by anisomycin was associated with marked and persistent elevation in IRS-1 serine phosphorylation. Treatment of animals with SB-239063, a potent and specific inhibitor of p38 MAPK, 10 min before reperfusion enabled insulin-mediated myocardial protection in InsulinAR rats. We conclude that insulin protects myocardium against ischemia-reperfusion injury when given prior to ischemia or reperfusion, and activation of p38 MAPK abolishes insulin's cardioprotective effect.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Reference39 articles.
1. Cytoprotection by Jun Kinase During Nitric Oxide–Induced Cardiac Myocyte Apoptosis
2. Protein kinase activation and myocardial ischemia/reperfusion injury
3. Myocardial protection by insulin is dependent on phospatidylinositol 3-kinase but not protein kinase C or K ATP channels in the isolated rabbit heart
4. BaroneFC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, Badger AM, White RF, McVey MJ, Legos JJ, Erhardt JA, Nelson AH, Ohlstein EH, Hunter AJ, Ward K, Smith BR, Adams JL, Parsons AA. SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. J Pharmacol Exp Ther 296: 312–321, 2001.
5. BurnsRJ, Gibbons RJ, Yi Q, Roberts RS, Miller TD, Schaer GL, Anderson JL, Yusuf S. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol 39: 30–36, 2002.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献