Impact of a mild decrease in fasting plasma glucose on β-cell function in healthy subjects and patients with type 2 diabetes

Author:

Seghieri Marta1,Rebelos Eleni1,Astiarraga Brenno D.1,Baldi Simona1,Mari Andrea2,Ferrannini Ele3

Affiliation:

1. Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy;

2. National Research Council (CNR) Institute of Neuroscience,Padua, Italy; and

3. CNR Institute of Clinical Physiology, Pisa, Italy

Abstract

Restoring euglycaemia for weeks or months improves insulin secretion in patients with type 2 diabetes (T2D). We tested whether mild decrements in fasting glucose (FPG) acutely affect β-cell function and insulin sensitivity. Thirteen normotolerant (NGT) and 10 T2D patients volunteered in pairs. In an isoglycemic test (Iso), after 100 min of stabilization, an incremental glucose infusion over 3 h was applied to raise plasma glucose to >22 mmol/l, followed by an arginine challenge; in a subisoglycemic test (Sub), a glucose infusion matching the plasma glucose time course of Iso was preceded by an insulin infusion period (100 min) aimed at maintaining a mild FPG reduction while avoiding hypoglycaemia. β-Cell function was assessed by mathematical modeling, whereas the acute insulin response (AIR) to arginine was determined from C-peptide levels. In the Sub, FPG was lowered by 17% in NGT and 31% in T2D patients. On the glucose ramp, total insulin release was lower in Sub than in Iso in both groups [from 106 (43) to 75 (39) nmol/m−2 in NGT and from 71 (63) to 64 (41) nmol/m−2 in T2D, P = 0.001]. In the Sub, β-cell glucose sensitivity was significantly ( P = 0.008) reduced in NGT [from 50 (31) to 43 (21) pmol·min−1·m−2·mM−1] but not in T2D [19 (20) to 20 (20) pmol·min−1·m−2·mM−1]. Likewise, AIR was lowered in NGT [8.9 (4.6) to 7.1 (4.4) nmol/l, P = 0.048] but not in T2D [4.7 (3.3) to 5.3 (3.2) nmol/l]. Insulin sensitivity improved in NGT but only marginally in T2D. Prestimulatory glucose levels acutely influence both β-cell function and insulin sensitivity differentially in nondiabetic and type 2 diabetic individuals.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3