Affiliation:
1. Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe; and
2. Dairy and Swine R & D Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
Abstract
Embryonic diapause is the reversible arrest of embryo development prior to implantation under a regime of uterine control that is not well understood. Our objective was to explore uterine modifications associated with the emergence of embryonic diapause in the mink, a species in which embryonic diapause characterizes every gestation. We investigated the uterine transcriptome at reactivation using the suppressive subtractive hybridization technique. A library of 123 differentially expressed genes between uteri with blastocysts in diapause and reactivated blastocysts was generated. Among those genes, 41.5% encode for potential secreted products that are implicated in regulation of cell proliferation (14%), homeostasis (14%), protein folding (11%), electron transport chain (8%), and innate immune response (8%), therefore suggesting that these biological processes are implicated in blastocyst reactivation. Two genes, the high-mobility group nucleosome binding domain 1 ( HMGN1), a chromatin remodeling factor, and the secreted protein acidic and cystein-rich ( SPARC), which is implicated in extracellular cell-cell interactions, were submitted to more detailed analysis of expression patterns in the mink uterus at blastocyst reactivation. Expression of both HMGN1 and SPARC was increased significantly in the uterus at embryo reactivation compared with diapause, principally in the endometrial epithelium and subepithelial stroma. These results provide new insight into uterine signaling at the emergence of the blastocyst from diapause and highlight the factors HMGN1 and SPARC as potential inductors of uterine environment modifications underlying uterine signaling during emergence of the embryo from embryonic diapause.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献