Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner

Author:

Ulrich-Lai Yvonne M.,Figueiredo Helmer F.,Ostrander Michelle M.,Choi Dennis C.,Engeland William C.,Herman James P.

Abstract

The adrenal gland is an essential stress-responsive organ that is part of both the hypothalamic-pituitary-adrenal axis and the sympatho-adrenomedullary system. Chronic stress exposure commonly increases adrenal weight, but it is not known to what extent this growth is due to cellular hyperplasia or hypertrophy and whether it is subregion specific. Moreover, it is not clear whether increased production of adrenal glucocorticoid after chronic stress is due to increased sensitivity to adrenocorticotropic hormone (ACTH) vs. increased maximal output. The present studies use a 14-day chronic variable stress (CVS) paradigm in adult male rats to assess the effects of chronic stress on adrenal growth and corticosterone steroidogenesis. Exogenous ACTH administration (0–895 ng/100 g body wt) to dexamethasone-blocked rats demonstrated that CVS increased maximal plasma and adrenal corticosterone responses to ACTH without affecting sensitivity. This enhanced function was associated with increased adrenal weight, DNA and RNA content, and RNA/DNA ratio after CVS, suggesting that both cellular hyperplasia and hypertrophy occurred. Unbiased stereological counting of cells labeled for Ki67 (cell division marker) or 4,6-diamidino-2-phenylindole (nuclear marker), combined with zone specific markers, showed that CVS induced hyperplasia in the outer zona fasciculata, hypertrophy in the inner zona fasciculata and medulla, and reduced cell size in the zona glomerulosa. Collectively, these results demonstrate that increased adrenal weight after CVS is due to hyperplasia and hypertrophy that occur in specific adrenal subregions and is associated with increased maximal corticosterone responses to ACTH. These chronic stress-induced changes in adrenal growth and function may have implications for patients with stress-related disorders.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3