Formate metabolism in fetal and neonatal sheep

Author:

Washburn Shannon E.1,Caudill Marie A.2,Malysheva Olga2,MacFarlane Amanda J.3,Behan Nathalie A.3,Harnett Brian4,MacMillan Luke4,Pongnopparat Theerawat4,Brosnan John T.4,Brosnan Margaret E.4

Affiliation:

1. Department of Veterinary Physiology and Pharmacology and Michael DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, Texas;

2. Division of Nutritional Sciences, Cornell University, Ithaca, New York;

3. Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada; and

4. Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada

Abstract

By virtue of its role in nucleotide synthesis, as well as the provision of methyl groups for vital methylation reactions, one-carbon metabolism plays a crucial role in growth and development. Formate, a critical albeit neglected component of one-carbon metabolism, occurs extracellularly and may provide insights into cellular events. We examined formate metabolism in chronically cannulated fetal sheep (gestation days 119–121, equivalent to mid-third trimester in humans) and in their mothers as well as in normal full-term lambs. Plasma formate levels were much higher in fetal lamb plasma and in amniotic fluid (191 ± 62 and 296 ± 154 μM, respectively) than in maternal plasma (33 ± 13 μM). Measurements of folate, vitamin B12, and homocysteine showed that these high formate levels could not be due to vitamin deficiencies. Elevated formate levels were also found in newborn lambs and persisted to about 8 wk of age. Formate was also found in sheep milk. Potential precursors of one-carbon groups were also measured in fetal and maternal plasma and in amniotic fluid. There were very high concentrations of serine in the fetus (∼1.6 mM in plasma and 3.5 mM in the amniotic fluid) compared with maternal plasma (0.19 mM), suggesting increased production of formate; however, we cannot rule out decreased formate utilization. Dimethylglycine, a choline metabolite, was also 30 times higher in the fetus than in the mother.

Funder

Foundation for the National Institutes of Health (FNIH)

Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)

Research and Development Corporation of Newfoundland and Labrador (Research & Development Corporation of Newfoundland and Labrador)

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3