A systematic review on thyroid organoid models: time-trend and its achievements

Author:

Samimi Hilda1,Atlasi Rasha2,Parichehreh-Dizaji Somayeh1,Khazaei Samaneh34,Akhavan Rahnama Mahshid4,Seifirad Soroush5,Haghpanah Vahid16

Affiliation:

1. Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

2. Evidence Based Practice Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

3. Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran

4. Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

5. Department of Internal Medicine, Hackensack Meridian Health Mountainside Medical Center, Montclair, New Jersey

6. Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Current in vitro models have played important roles in improving knowledge and understanding of cellular and molecular biology, but cannot exactly recapitulate the physiology of human tissues such as thyroid. In this article, we conducted a systematic review to present scientific and methodological time-trends of the reconstruction and generation of 3 D functional thyroid follicles and organoids for thyroid research in health and disease. “Web of Science (ISI)”, “Scopus”, “Embase”, “Cochrane Library”, and “PubMed” were systematically searched for papers published since 1950 to May 2020 in English language, using the predefined keywords. 212 articles were reviewed and finally 28 papers that met the inclusion and exclusion criteria were selected. Among the evidence for the examination of 3 D cell culture methods in thyroid research, there were only a few studies related to the organoid technology and its potential applications in understanding morphological, histological, and physiological characteristics of the thyroid gland and reconstructing this tissue. Besides, there was no study using organoids to investigate the tumorigenesis process of thyroid. Based on the results of this study, despite all the limitations and controversies, the exciting and promising organoid technology offers researchers a wide range of potential applications for more accurate modeling of thyroid in health and diseases and provides an excellent preclinical in vitro platform. In future, organoid technology can provide a better understanding of the molecular mechanisms of pathogenesis and tumorigenesis of thyroid tissue and more effective treatment for related disorders due to more accurate simulation of the thyroid physiology.

Funder

There is no any funder.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3