Affiliation:
1. Departments of Internal Medicine and Physiology, Wayne State University School of Medicine and John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48201
Abstract
Because dopamine influences arginine vasopressin (AVP) release, the present studies were designed to ascertain the dopamine receptor subtype that potentiates angiotensin II-induced AVP secretion in cultured hypothalamo-neurohypophysial explants. Dopamine (a nonselective D1/D2 agonist), apomorphine (a D2 ≫ D1 agonist), and SKF-38393 (a selective D1 agonist) dose dependently increased AVP secretion. Maximal AVP release was observed with 5 μM dopamine, 307 ± 66% ⋅ explant−1 ⋅ h−1, 1 μM SKF-38393, 369 ± 41% ⋅ explant−1 ⋅ h−1, and 0.1 μM apomorphine, 374 ± 67% ⋅ explant−1 ⋅ h−1. Selective D1 antagonism with 1 μM SCH-23390 blocked AVP secretion to values no different from basal. Domperidone (D2 antagonist), phenoxybenzamine (nonselective adrenergic antagonist), and prazosin (α1-antagonist) failed to prevent release. D1 antagonism also prevented AVP secretion to 1 μM angiotensin II [angiotensin II, 422 ± 87% ⋅ explant−1 ⋅ h−1vs. angiotensin II plus SCH-23390, 169 ± 28% ⋅ explant−1 ⋅ h−1( P < 0.05)], but D2 and α1-adrenergic blockade did not. In contrast, AT1 receptor inhibition with 0.5 μM losartan blocked angiotensin II- but not dopamine-induced AVP release. AT2antagonism had no effect. Although subthreshold doses of the agonists did not increase AVP secretion (0.05 μM dopamine, 133 ± 44% ⋅ explant−1 ⋅ h−1; 0.01 μM SKF-38393, 116 ± 26% ⋅ explant−1 ⋅ h−1;and 0.001 μM angiotensin II, 104 ± 29% ⋅ explant−1 ⋅ h−1), the combination of dopamine and angiotensin II provoked a significant rise in AVP [420 ± 83% ⋅ explant−1 ⋅ h−1( P < 0.01)]. Similar results were observed with SKF-38393 and angiotensin II, and the AVP response was blocked to basal levels by either D1 or AT1 antagonism. These findings support a role for D1 receptor activation to increase AVP release and mediate angiotensin II-induced AVP release within the hypothalamo-neurohypophysial system. The data also suggest that the combined subthreshold stimulation of receptors that use distinct intracellular pathways can prompt substantial AVP release.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献