Insulin does not change the intracellular distribution of hexokinase in rat heart

Author:

Doenst Torsten1,Han Qiuying1,Goodwin Gary W.1,Guthrie Patrick H.1,Taegtmeyer Heinrich1

Affiliation:

1. Department of Medicine, Division of Cardiology, University of Texas-Houston Medical School, Houston, Texas 77030

Abstract

Preliminary evidence has suggested that hexokinase in rat heart changes its kinetic properties in response to insulin through translocation to the outer mitochondrial membrane. We reexamined this hypothesis in light of tracer kinetic evidence to the contrary. Our methods were as follows. Working rat hearts were perfused with Krebs-Henseleit buffer containing glucose (5 mmol/l) and sodium oleate (0.4 mmol/l). Dynamic glucose uptake was measured with [2-3H]glucose and with 2-deoxy-2-[18F]fluoroglucose (2-[18F]DG). Hexokinase activity was determined in the cytosolic and mitochondrial fractions. Our results are as follows. Uptake of glucose and uptake of 2-[18F]DG were parallel. Insulin (1 mU/ml) increased glucose uptake threefold but had no effect on 2-[18F]DG uptake. The tracer-to-tracee ratio decreased significantly. The Michaelis-Menten constant of hexokinase for 2-deoxyglucose was up to 10 times higher than for glucose. There was no difference in maximal reaction velocity. Two-thirds of hexokinase was bound to mitochondria. Insulin neither caused translocation nor changed Michaelis-Menten constant or maximal reaction velocity. In conclusion, the insulin-induced changes in the tracer-to-tracee ratio are due to a shift of the rate-limiting step for glucose uptake from transport to phosphorylation by hexokinase. Insulin does not affect the intracellular distribution or the kinetics of hexokinase.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3