Leptin induction of UCP1 gene expression is dependent on sympathetic innervation

Author:

Scarpace Philip J.1,Matheny Michael1

Affiliation:

1. Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center, Gainesville 32608; and Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida 32610

Abstract

We previously demonstrated that leptin increases uncoupling protein 1 (UCP1) and lipoprotein lipase (LPL) gene expression in brown adipose tissue (BAT) of rats. To determine whether the induction of these transcripts is dependent on sympathetic innervation of BAT, we unilaterally surgically denervated interscapular BAT in both pair-fed and leptin (0.9 mg/day by infusion)-treated rats. In pair-fed rats, the level of UCP1 mRNA in the denervated BAT pad was 30–47% less than in the innervated pad. In the intact BAT pad, leptin administration increased UCP1 mRNA levels by nearly 2.5-fold compared with pair-fed rats. In contrast, in the denervated BAT pad, there was no increase in UCP1 gene expression. When LPL mRNA was examined in pair-fed rats, there was no difference between innervated and denervated BAT pads. With leptin administration, LPL gene expression increased by 75% in both the innervated and denervated BAT pads. β3-Adrenergic receptor mRNA was unaffected by either denervation or leptin, whereas uncoupling protein 2 mRNA levels were increased in epididymal white adipose tissue (WAT) but not in perirenal WAT. CGP-12177, a specific β3-adrenergic receptor agonist, induced nearly a fourfold increase in UCP1 and a twofold increase in LPL gene expression in both the innervated and denervated BAT pads. These data indicate that the leptin induction of UCP1 gene expression in BAT is dependent on sympathetic innervation but that the leptin induction of LPL gene expression is not.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3