Effects of epinephrine on glucose metabolism in contracting rat skeletal muscles

Author:

Aslesen Rune12,Jensen Jørgen12

Affiliation:

1. Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo; and

2. The Norwegian University of Sport and Physical Education, Ullevål, Hageby, N-0806 Oslo, Norway

Abstract

The effects of epinephrine on glucose metabolism during contractile activity and insulin stimulation were investigated in fast-twitch (epitrochlearis) and slow-twitch (soleus) muscles from Wistar rats. All muscles were mounted on contraction apparatuses, and some muscles were stimulated electrically for 30 min in vitro. Glucose uptake and glucose phosphorylation were measured with 2-[1,2-3H(N)]deoxy-d-glucose and glucose transport with 3- O-[ methyl-3H]methyl-d-glucose.d-[1-14C]mannitol was used to correct for extracellular space. In epitrochlearis, both contraction and insulin increased glucose transport by threefold, and combined they showed an additive effect. Epinephrine (10−6 M) did not influence glucose transport across the membrane during contractile activity or insulin stimulation. In the absence of epinephrine, similar glucose phosphorylation was obtained during contraction and during insulin stimulation in epitrochlearis (∼12 mmol ⋅ kg dry wt−1 ⋅ 30 min−1). In the presence of epinephrine, 9.5 ± 0.6 mmol ⋅ kg dry wt−1 ⋅ 30 min−1 glucose was phosphorylated during contraction, whereas only 2.0 ± 0.3 mmol ⋅ kg dry wt−1 ⋅ 30 min−1 was phosphorylated during insulin stimulation ( P < 0.01), despite a similar glucose 6-phosphate concentration. Comparable results were obtained in soleus. In conclusion, our data suggest that epinephrine inhibits glucose phosphorylation much less during contraction than during insulin stimulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3