Affiliation:
1. Department of Medicine V and
2. Institute of Experimental Clinical Research, Aarhus University Hospital, DK-8000 Aarhus C; and
3. Department of Medicine A, State University Hospital, 2100 Copenhagen, Denmark
Abstract
Growth hormone (GH) reduces the catabolic side effects of steroid treatment due to its effects on tissue protein synthesis/degradation. Little attention is focused on hepatic amino acid degradation and urea synthesis. Five groups of rats were given 1) placebo, 2) prednisolone, 3) placebo, pair fed to the steroid group, 4) GH, and 5) prednisolone and GH. After 7 days, the in vivo capacity of urea N synthesis (CUNS) was determined by saturating alanine infusion, in parallel with measurements of liver mRNA levels of urea cycle enzymes, N contents of organs, N balance, and hormones. Prednisolone increased CUNS (μmol ⋅ min−1 ⋅ 100 g−1, mean ± SE) from 9.1 ± 1.0 (pair-fed controls) to 13.2 ± 0.8 ( P < 0.05), decreased basal blood α-amino N concentration from 4.2 ± 0.5 to 3.1 ± 0.3 mmol/l ( P < 0.05), increased mRNA levels of the rate- and flux-limiting urea cycle enzymes by 20 and 65%, respectively ( P < 0.05), and decreased muscle N contents and N balance. In contrast, GH decreased CUNS from 6.1 ± 0.9 (free-fed controls) to 4.2 ± 0.5 ( P < 0.05), decreased basal blood α-amino N concentration from 3.8 ± 0.3 to 3.2 ± 0.2, decreased mRNA levels of the rate- and flux-limiting urea cycle enzymes to 60 and 40%, respectively ( P < 0.05), and increased organ N contents and N balance. Coadministration of GH abolished all steroid effects. We found that prednisolone increases the ability of amino N conversion into urea N and urea cycle gene expression. GH had the opposite effects and counteracted the N-wasting side effects of prednisolone.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献