Surgical trauma decreases glutathione synthetic capacity in human skeletal muscle tissue

Author:

Luo Jia-Li1,Hammarqvist Folke1,Andersson Kerstin1,Wernerman Jan1

Affiliation:

1. Department of Anesthesiology and Intensive Care, Clinical Research Center, Huddinge University Hospital; Department of Surgery, St. Görans Hospital; and Karolinska Institute, 141 86 Huddinge, Stockholm, Sweden

Abstract

To gain insight into cellular metabolism underlying the glutathione (GSH) alterations induced by surgical trauma, we assessed postoperative skeletal muscle GSH metabolism and its redox status in 10 patients undergoing elective abdominal surgery. Muscle biopsy specimens were taken from the quadriceps femoris muscle before and at 24 and 72 h after surgery. GSH concentrations decreased by 40% at 24 h postoperatively compared with the paired preoperative values ( P < 0.001) and remained low at 72 h ( P < 0.01). The concentration of GSH disulfide (GSSG) did not significantly change throughout the study period, whereas the total GSH (as GSH equivalent) concentration decreased after surgery. Of the GSH constituent amino acids, the concentration of cysteine remained unchanged throughout the study period (from 28.2 ± 10.1 preoperatively to 29.4 ± 13.9 at 24 h postoperatively and to 28.3 ± 15.6 μmol/kg wet wt at 72 h postoperatively). Despite a reduction in glutamate concentration by 40% 24 h after surgery, no correlation was established between GSH and glutamate concentrations postoperatively. Activity of γ-glutamylcysteine synthetase did not change significantly after surgery, whereas GSH synthetase activity decreased postoperatively (from 66.4 ± 19.1 preoperatively to 41.0 ± 10.5 24 h postoperatively, P < 0.01, and to 46.0 ± 11.7 μU/mg protein 72 h postoperatively, P < 0.05). The decrease of GSH was correlated to the reduced GSH synthetase activity seen at 24 h postoperatively. These results indicate that the skeletal muscle GSH pool is diminished in patients after surgical trauma. The depletion of the GSH pool is associated with a decreased activity of GSH synthetase, indicating a decreased GSH synthetic capacity in skeletal muscle tissue.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3