Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts

Author:

Liu Que1,Clanachan Alexander S.1,Lopaschuk Gary D.1

Affiliation:

1. Cardiovascular Research Group, Departments of Pediatrics and Pharmacology, The University of Alberta, Edmonton, Alberta, Canada T6G 2S2

Abstract

Clinical studies have demonstrated improved myocardial recovery after severe ischemia in response to acute triiodothyronine (T3) treatment. We determined whether T3 improves the recovery of ischemic hearts by improving energy substrate metabolism. Isolated working rat hearts were perfused with 5.5 mM glucose and 1.2 mM palmitate and were subjected to 30 min of no-flow ischemia. Glycolysis, glucose oxidation, and palmitate oxidation were measured during aerobic reperfusion by adding [5-3H]glucose, [U-14C]glucose, or [9,10-3H]palmitate to the perfusate, respectively. During reperfusion, cardiac work in untreated hearts recovered to a lesser extent than myocardial O2 consumption (MV˙o 2), resulting in a decreased recovery of cardiac efficiency, which recovered to only 25% of preischemic values. Treatment of hearts with T3 (10 nM) before ischemia increased glucose oxidation during reperfusion, which was associated with a significant increase in pyruvate dehydrogenase (PDH) activity, the rate-limiting enzyme for glucose oxidation. In contrast, T3 had no effect on MV˙o 2, glycolysis, or palmitate oxidation. This resulted in a significant decrease in H+ production from glycolysis uncoupled from glucose oxidation (2.7 ± 0.3 and 1.9 ± 0.3 μmol ⋅ g dry wt−1 ⋅ min−1in control and T3-treated hearts, respectively, P < 0.05), as well as a 3.2-fold improvement in cardiac work and a 2.3-fold increase in cardiac efficiency compared with untreated postischemic hearts ( P < 0.05). These data suggest that T3 can exert acute effects that improve the coupling of glycolysis to glucose oxidation, thereby decreasing H+ production and increasing cardiac efficiency as well as contractile function during reperfusion of the postischemic heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3