Motor unit number estimate as a predictor of motor dysfunction in an animal model of type 1 diabetes

Author:

Souayah Nizar,Potian Joseph G.,Garcia Carmen C.,Krivitskaya Natalia,Boone Christine,Routh Vanessa H.,McArdle Joseph J.

Abstract

Peripheral neuropathy is a common complication of diabetes that leads to severe morbidity. In this study, we investigated the sensitivity of motor unit number estimate (MUNE) to detect early motor axon dysfunction in streptozotocin (STZ)-treated mice. We compared the findings with in vitro changes in the morphology and electrophysiology of the neuromuscular junction. Adult Thy1-YFP and Swiss Webster mice were made diabetic following three interdaily intraperitoneal STZ injections. Splay testing and rotarod performance assessed motor activity for 6 wk. Electromyography was carried out in the same time course, and compound muscle action potential (CMAP) amplitude, latency, and MUNE were estimated. Two-electrode voltage clamp was used to calculate quantal content (QC) of evoked transmitter release. We found that an early reduction in MUNE was evident before a detectable decline of motor activity. CMAP amplitude was not altered. MUNE decrease accompanied a drop of end-plate current amplitude and QC. We also observed small axonal loss, sprouting of nerve endings, and fragmentation of acetylcholine receptor clusters at the motor end plate. Our results suggest an early remodeling of motor units through the course of diabetic neuropathy, which can be readily detected by the MUNE technique. The early detection of MUNE anomalies is significant because it suggests that molecular changes associated with pathology and leading to neurodegeneration might already be occurring at this stage. Therefore, trials of interventions to prevent motor axon dysfunction in diabetic neuropathy should be administered at early stages of the disorder.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3