Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis

Author:

Basciano Heather,Miller Abigale E.,Naples Mark,Baker Christopher,Kohen Rita,Xu Elaine,Su Qiaozhu,Allister Emma M.,Wheeler Michael B.,Adeli Khosrow

Abstract

Although the atherogenic role of dietary cholesterol has been well established, its diabetogenic potential and associated metabolic disturbances have not been reported. Diet-induced hamster models of insulin resistance and dyslipidemia were employed to determine lipogenic and diabetogenic effects of dietary cholesterol. Metabolic studies were conducted in hamsters fed diets rich in fructose (40%), fat (30%), and cholesterol (0.05–0.25%) (FFC) and other test diets. Short-term feeding of the FFC diet induced insulin resistance, glucose intolerance, hypertriglyceridemia, and hypercholesterolemia. Prolonged feeding (6–22 wk) of the FFC diet led to severe hepatic steatosis, glucose intolerance, and mild increases in fasting blood glucose, suggesting progression toward type 2 diabetes, but did not induce β-cell dysfunction. Metabolic changes induced by the diet, including dyslipidemia and insulin resistance, were cholesterol concentration dependent and were only markedly induced on a high-fructose and high-fat dietary background. There were significant increases in hepatic and plasma triglyceride with FFC feeding, likely due to a 10- to 15-fold induction of hepatic stearoyl-CoA desaturase compared with chow levels ( P < 0.03). Hepatic insulin resistance was evident based on reduced tyrosine phosphorylation of the insulin receptor-β, IRS-1, and IRS-2 as well as increased protein mass of protein tyrosine phosphatase 1B. Interestingly, nuclear liver X receptor (LXR) target genes such as ABCA1 were upregulated on the FFC diet, and dietary supplementation with an LXR agonist (instead of dietary cholesterol) worsened dyslipidemia, glucose intolerance, and upregulation of target mRNA and proteins similar to that of dietary cholesterol. In summary, these data clearly implicate dietary cholesterol, synergistically acting with dietary fat and fructose, as a major determinant of the severity of metabolic disturbances in the hamster model. Dietary cholesterol appears to induce hepatic cholesterol ester and triglyceride accumulation, and diet-induced LXR activation (via cholesterol-derived oxysterols) may possibly be one key underlying mechanism.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3