Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity

Author:

Nielsen Joachim12ORCID,Christensen Anders E.1,Nellemann Birgitte3,Christensen Britt3

Affiliation:

1. Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense M, Denmark

2. Department of Pathology, SDU Muscle Research Cluster (SMRC), Odense University Hospital, Odense C, Denmark

3. Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark

Abstract

In skeletal muscle, an accumulation of lipid droplets (LDs) in the subsarcolemmal space is associated with insulin resistance, but the underlying mechanism is not clear. We aimed to investigate how the size, number, and location of LDs are associated with insulin sensitivity and muscle fiber types and are regulated by aerobic training and treatment with an erythropoiesis-stimulating agent (ESA) in healthy young untrained men. LD analyses were performed by quantitative transmission electron microscopy, and insulin sensitivity was assessed by a hyperinsulinemic-euglycemic clamp. At baseline, we found that only the diameter (and not the number) of individual subsarcolemmal LDs was negatively associated with insulin sensitivity ( R2 = 0.20, P = 0.03, n = 29). Despite 34% ( P = 0.004) fewer LDs, the diameter of individual subsarcolemmal LDs was 20% ( P = 0.0004) larger in type 2 fibers than in type 1 fibers. Furthermore, aerobic training decreased the size of subsarcolemmal LDs in the type 2 fibers, and ESA treatment lowered the number of both intermyofibrillar and subsarcolemmal LDs in the type 1 fibers. In conclusion, the size of individual subsarcolemmal LDs may be involved in the mechanism by which LDs are associated with insulin resistance in skeletal muscle.

Funder

The world anti-doping agency

The Danish Council for Independent Research

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3